
July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 1

Verification of an Industrial SystemC/TLM
Model Using LOTOS and CADP

MEMOCODE 2009

Hubert Garavel, Claude Helmstetter, Olivier Ponsini,

and Wendelin Serwe

INRIA / VASY

http://www.inrialpes.fr/vasy

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 2

Transaction Level Modeling (TLM)

Abstraction level for hardware modeling aiming at
Early availability
Fast simulation

2 main sub-levels:
Loosely Timed (TLM-LT) and Approximately Timed (TLM-AT)

Applications:
• Functional verification
• Software development
• Performance analysis (using TLM-AT)
• Golden model for hardware verification

No replacement for low level descriptions (e.g., RTL)
No automatic synthesis

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 3

Validation at the transaction level

OSCI's SystemC simulator allows fast simulations

But some features are lacking

• Cannot simulate all possible behaviors (no interactive scheduler)

• No coverage guarantee

• No backtracking

• Cannot check complex properties

CADP: Construction and Analysis of Distributed Processes

Provides: model checking, interactive simulation, …

Based on explicit state manipulation

Entry points: LOTOS (process algebra) or LTS (explicit graph)

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 4

Previous work(1/2)

Translation rules (+benchmarks) described in:

FM'08, O.Ponsini & W.Serwe

MEMOCODE'08, C.Helmstetter & O.Ponsini

Many others similar translations

To synchronous automata (LusSy v1: M.Moy, F.Maraninchi, …)

• Automatic translation

• Connected to SMV, NBAC, SCADE prover

To Promela/SPIN (C.Traulsen, J.Cornet, …)

To Petri nets, to Finite State Machines, to Kripke structures, …

LOTOS
model

SystemC/TLM
model by hand

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 5

Previous work: experiments (2/2)

Academic benchmarks
At most a few hundreds lines of code

Using LusSy and SMV (2005): up to 13 processes

Using Promela/SPIN (2007): up to 17 processes

Using Lotos/CADP (2008): up to 21 processes

Few realistic case studies
“EASY platform” (7 modules, 8 processes, 3500 lines of code)

• LusSy succeeded to translate this TL model to the SMV input language

• But SMV failed to prove any property, and to find any bug

Aim of this paper: a real case study

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 6

The BDisp

Hardware component designed by STMicroelectronics
Computes video streams
6 instructions queues with configurable priorities

• 2 composition queues : real-time jobs (the result is immediately displayed)
• 4 application queues : non real-time jobs (the result is stored)

Connected to
• CPU + embedded software
• VTG (video test generator): sends an interruption on every new screen line

The BDisp SystemC/TLM model
one SystemC thread
+ one thread in the CPU, and one thread in the VTG
Contains fixed durations
About 26,000 lines of code

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 7

Objectives

Develop a LOTOS model of the BDisp

Check whether CADP can
Prove correctness properties

Help to find errors

We address the control part of the BDisp
Mainly: arbitration of the instruction queues

Complete removal of the graphical operations

Abstraction of the timing annotations
Does the correctness of the BDisp SystemC/TLM model depend on
the fixed durations

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 8

Outline

Introduction

Overview of the BDisp LOTOS model

Abstractions and optimizations

Experimental results

Conclusion and future work

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 9

Translating the BDisp into LOTOS

A complete translation would require too much work

Different handling of different parts of the code

Communication code
Concerns: transactions, SystemC events, shared variables

Translated to LOTOS according to systematic rules [FM’08]

Local computations
Concerns: sequential control, data manipulations, …

The LOTOS model imports C++ code of the original model
• BDisp access: execution of the corresponding C++ code

Write functions to store and compare the state of the C++ types

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 10

Architecture of the LOTOS model

BDisp

CPU

VTG

C++LOTOS C and C++

Functions
extracted
from the

BDisp
SC/TLM
model

Interface

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 11

Compact representation in C
of the BDisp state

BDisp: C++ class describing the BDisp (provided by STM)
This class is memory consuming: ~40 kilobytes

Cannot be modified without modifying all the C++ code

No copy, no hash, and no comparison functions

C_State: C type to store efficiently a BDisp state
Store only relevant data

(e.g., parameters for graphical operations are not stored)

2 conversion functions
• LOTOS (C) to SystemC (C++)

• SystemC (C++) to LOTOS (C)

Copy and comparison using memcpy() and memcmp()

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 12

Interface between TLM and LOTOS

LOTOS code
let new_state:Lotos_state = compute_X(old_state)

Interface code
C_state compute_X(C_state state) {

1. Expand the C state to a C++ state (~original class)
2. Call the corresponding C++ method
3. Convert the C++ state to the C compact representation
}

C++ code extracted from the SystemC/TLM model
Contains a method void BDisp::compute_X() {…}

When a communication is encountered (e.g., transactions), we
split the method in smaller methods without SystemC/TLM code

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 13

Outline

Introduction

Overview of the BDisp LOTOS model

Abstractions and optimizations

Experimental results

Conclusion and future work

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 14

Abstractions reducing the graph size

Goal: validate BDisp synchronization issues

Focus on the control part
Instruction node: we keep only informations related to
arbitration

Instruction queues
Instruction nodes are generated when read by the BDisp

(instead of generated when written by the CPU)

So at most one instruction node per queue is stored at a time

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 15

Reduction of the state size
without loss of information

BDisp state size reduced to 52 bytes
Some ‘int’ variables replaced by ‘bool’ (sc_signal<int> simulates
faster than sc_signal<bool> due to template specialization)

Use of bit fields

Removal of padding bytes

The whole system state was still larger than 1000 bytes
Reduced to 104 bytes after changing how the BDisp is accessed

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 16

Accessing the BDisp state: 1st version

Usual solution for shared variables: sending the state

Problem:
Each process contains one local variable of type T

A state of the BDisp LOTOS model contained 17 copies of the
BDisp state

process User[READ,WRITE,...

...
READ ?a:T;
let b:T = modify(a) in
let c:Bool = test(b) in
WRITE !b;
...

process Var[READ,WRITE]
(state:T): noexit :=

WRITE ?new:T;Var[...](new)
[]

READ !state; Var[...](new)

endproc

T

T

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 17

Accessing the BDisp state: 2nd version

Second solution: sending the operations

Only one variable of type T for the whole system

Problem: the number of transitions may increase
Solution: merge operations (modify_and_test_opcode)

process User[EXEC,RETURN,..

...
EXEC !modify_opcode;
EXEC !test_opcode;
RETURN ?c:Bool;
...

process Var[EXEC,RETURN]
(state:T): noexit :=

EXEC !modify_opcode;
Var[...](modify(state))
[]

EXEC !test_opcode;
RETURN !test(state);
Var[...](state)
[] ...

op

Bool

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 18

Outline

Introduction

Overview of the BDisp LOTOS model

Abstractions and optimizations

Experimental results

Conclusion and future work

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 19

Translation results

We developed a LOTOS model of the BDisp
Less than 2 months of work

1000 lines of LOTOS

2500 lines of C/C++ written manually

5500 lines of C++ code reused (among 26,000 lines)
• Some changes to separate local computations and commnunication code

• Minor change to make the BDisp C++ code compatible with 64 bit machines

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 20

First verification results

Interactive simulation with backtracking

Generation of the full labeled transition system (LTS)
Not possible using less than 16 GB of RAM

Up to 155,000,000 states and 371,000,000 transitions

On-the-fly reduction did not help (reductor tool of CADP)

Compositional verification cannot be applied
The SystemC/TLM description is too monolithic

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 21

Verification scenarios

Verification scenarios and property checking
“verification scenario”: restriction of some inputs to concentrate
on something useful (e.g., trigger two queues, then stop one)

10 verification scenarios and 5 correctness properties

Possible to generate and reduce the LTS of the scenarios

Property checking returned one unexpected result:
one property was wrong on the untimed version,

but correct one the original timed version

Can be replayed on the original SystemC/TLM model
• Requires an interactive SystemC scheduler (SCRV)

• Requires to remove some “wait(duration)” statements

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 22

Conclusion

Possible to use CADP tools on the BDisp, which is an
industrial case study

Too large state space to be generated completely

Successful verification of scenarios representing each a
large set of behaviors

Found a synchronization error in the untimed version of
the BDisp model

Started discussion with STMicroelectronics about a new
case study (replacement of the BDisp in new SoCs)

July 13th, 2009 C.Helmstetter (INRIA) MEMOCODE'09 23

Reducing the translation effort

Still much manual work to connect SystemC/TLM with
CADP

What could be automated, using a C++ frontend:
The generation of the LOTOS code corresponding to the
communications

• Systematic rules have been described in previous papers

The compact C representation and the interface code
• Reducing the state size may require static analysis or human help to bound

integer variables

However, it seems difficult to automate the abstractions

